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It has been recently shown that computation with stochastic numbers as regard to addition
and multiplication by scalars can be reduced to computation in familiar vector spaces. In this
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1. Introduction

This work continues our study of the algebraic properties of stochastic numbers
with respect to addition and multiplication by scalars [1,2,7]. A distributivity-like rela-
tion for stochastic numbers allows us to introduce spaces analogous to quasilinear spaces
[5,6,8].

Stochastic numbers are Gaussian random variables with a known mean value and a
known standard deviation. In practice, stochastic numbers are computed using the CES-
TAC method, which is a Monte-Carlo method consisting in performing each arithmetic
operation several times using an arithmetic with a random rounding mode, see [3,9,11].
Some fundamental properties of stochastic numbers are considered in [4,10].

The mean values of the stochastic numbers satisfy the usual real arithmetic,
whereas standard deviations are added and multiplied by scalars in a specific way:

s1 ⊕ s2 =
√

s2
1 + s2

2 , γ ∗ s = |γ | · s. As regard to addition the system of standard
deviations is an Abelian monoid with cancellation law. This monoid can be embedded
in an additive group and after a suitable extension of multiplication by scalar one ob-
tains a so-called s-space, which is closely related to a vector space [7]. This allows us
to introduce in s-spaces concepts like linear combination, basis, dimension, etc. Thus
computations in s-spaces are reduced to computations in vector spaces.
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In sections 2 and 3 we briefly present the theory of s-spaces as regard to the arith-
metic operations for addition and multiplication by scalars (for a detailed presentation
of the theory, see [7]). Section 4 considers the algebraic solution of linear systems of
equations which right-hand sides consist of stohastic numbers. In section 5 we present
several numerical examples in order to compare the algebraic solution of a probmem
involving stochastic numbers with the solution obtained by the CESTAC method.

2. Stochastic numbers and stochastic arithmetic

By R we denote the set of reals; we use the same notation for the linearly ordered
field of reals R = (R,+, ·,�). Throughout the paper R can be replaced by any other
linearly ordered field. For any integer n � 1 we denote by R

n the set of all n-tuples
(α1, α2, . . . , αn), where αi ∈ R. The set R

n forms a vector space under the familiar
operations of addition and multiplication by scalars denoted by V n = (Rn,+, R, ·),
n � 1. By R

+ we denote the set of nonnegative real numbers.
A stochastic number X is a Gaussian random variable with a known mean value

m ∈ R and a known nonnegative standard deviation s ∈ R
+ and is denoted X = (m; s).

The set of stochastic numbers is S = {(m; s) | m ∈ R, s ∈ R
+}.

Arithmetic operations between stochastic numbers: addition and multiplication by
scalars. Let X1 = (m1; s1), X2 = (m2; s2) ∈ S. Addition and multiplication by
scalars are defined by

X1 s+X2 = (m1; s1) s+ (m2; s2)
def=

(
m1 + m2;

√
s2

1 + s2
2

)
, (1)

γ s∗X = γ s∗ (m; s)
def= (

γ m; |γ |s), γ ∈ R. (2)

Symmetric stochastic numbers. A stochastic number of the form (0; s) is called sym-
metric. If X1, X2 are symmetric stochastic numbers, then X1 s+X2 and λ s∗ X1, λ ∈ R,
are also symmetric stochastic numbers. Clearly, there is a 1–1 correspondence between
the set of symmetric stochastic numbers and the set R

+ of standard deviations; the lat-

ter are added and multiplied by scalars according to the rules: s1 ⊕ s2 =
√

s2
1 + s2

2 ,
γ ∗ s = |γ | · s, γ ∈ R. We use special notation “⊕”, “∗” for the arithmetic operations
with the standard deviations, as these operations are different from the operations for
numbers. The operations “⊕”, “∗” induce a special arithmetic on the set R

+. Consider
the system (R+,⊕, R, ∗), where:

α ⊕ β =
√

α2 + β2, α, β ∈ R
+, (3)

γ ∗ δ = |γ |δ, γ ∈ R, δ ∈ R
+. (4)

Proposition 1 [7]. The system (R+,⊕, R, ∗) is an Abelian monoid with cancellation,
such that for s, t ∈ R

+, α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (5)
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α ∗ (β ∗ s) = (αβ) ∗ s, (6)

1 ∗ s = s, (7)

(−1) ∗ s = s, (8)√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s, α, β � 0. (9)

A system satisfying the conditions of proposition 1 is called an s-space of monoid
structure.

2.1. The group system

We extend the monoid (R+,⊕) into a group (R,⊕). For α ∈ R denote

σ (α) =
{+, if α � 0;

−, if α < 0.

We extend ⊕ for all α, β ∈ R:

α ⊕ β = σ (σ (α)α2 + σ (β)σ 2)

√∣∣σ (α)α2 + σ (β)β2
∣∣

= σ (α + β)

√∣∣σ (α)α2 + σ (β)β2
∣∣, (10)

noticing that for α, β ∈ R:

σ (α + β) = σ
(
σ (α)α2 + σ (β)β2

) = σ (α ⊕ β). (11)

The system (R,⊕) with ⊕ defined by (10) is an Abelian group with null 0 and
opposite opp(α) = −α, i.e. α ⊕ (−α) = 0.

Examples. 1 ⊕ 1 = √
2, 1 ⊕ 2 = √

5, 3 ⊕ 4 = 5, 5 ⊕ (−4) = 3, 4 ⊕ (−5) = −3,
(−3) ⊕ (−4) = −5, 1 ⊕ 2 ⊕ 3 = √

14.

Formula (10) is an extension of the expression α ⊕β, α, β � 0, to arbitrary scalars
α, β ∈ R. On the other side we can interpret (10) as an operation on standard devia-
tions, which has been extended for generalized standard deviations (including improper,
negative ones). In other words we isomorphically extend the set R

+ of (usual, proper)
standard deviations to the set R of generalized ones, admitting also improper (negative)
standard deviations s < 0. Note that (−1) ∗ s �= opp(s) = −s. Because of this the
opposite in (R,⊕) will be also denoted opp(α) = α−; we may write, e.g., 4 ⊕ 5− = 3−.

Multiplication by scalars is naturally extended on the set R of generalized standard
deviations by: γ ∗ s = |γ |s, s ∈ R. Multiplication by −1 (negation) is denoted ¬s =
(−1) ∗ s. Thus in R we have (−1) ∗ s = |−1|s = s, s ∈ R.

It is easy to check that relations (5)–(9) hold true for generalized standard devia-
tions s, t ∈ R. This justifies the following definition:
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Definition 1. A system (S,⊕, R, ∗), such that: (i) (S,⊕) is an Abelian additive group,
and (ii) for any s, t ∈ S and α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (12)

α ∗ (β ∗ s) = (αβ) ∗ s, (13)

1 ∗ s = s, (14)

(−1) ∗ s = s, (15)√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s, α, β � 0, (16)

is called an s-space over R (with group structure).

The canonical s-space. For any integer k � 1 the set S = R
k of all k-tuples (α1, α2,

. . . , αk), where αi ∈ R and (α1, α2, . . . , αk) = (β1, β2, . . . , βk) whenever α1 =
β1, α2 = β2, . . . , αk = βk, forms an s-space over R under the following operations

(α1, . . . , αk) ⊕ (β1, . . . , βk) = (α1 ⊕ β1, . . . , αk ⊕ βk), (17)

γ ∗ (α1, α2, . . . , αk) = (|γ |α1, |γ |α2, . . . , |γ |αk), γ ∈ R, (18)

where α ⊕ β for α, β ∈ R is given by (10).
The s-space Sk = (Rk,⊕, R, ∗) is called the canonical s-space (of standard

deviations). Note that multiplication by −1 (negation) in Sk is same as identity:
¬(α1, . . . , αk) = (α1, . . . , αk), while the opposite operator is:

opp(α1, α2, . . . , αk) = (α1, α2, . . . , αk)− = (−α1,−α2, . . . ,−αk). (19)

We have Sk = ⊕
kS1; here

⊕
k means direct sum taken k times.

Relation (16) contains the condition α, β � 0. We next give a general relation,
which comprises (16) as a special case.

Denote s+ = s. Since s− = opp(s), the notation sλ makes sense for any λ ∈
{+,−}.

Proposition 2 [7]. Assume that (S,⊕, R, ∗) is an s-space over R. For all α, β ∈ R and
all s ∈ S we have√∣∣σ (α)α2 + σ (β)β2

∣∣ ∗ sσ(α+β) = α ∗ sσ(α) ⊕ β ∗ sσ(β). (20)

Relation (20) can be written briefly as

(α ⊕ β) ∗ sσ(α+β) = α ∗ sσ(α) ⊕ β ∗ sσ(β). (21)

2.2. Relations between s-spaces and vector spaces

Vector spaces induced by s-spaces. Let (S,+, R, ∗) be an s-space over R. Define the
operation “·”: R × S −→ S by

α · c = √|α| ∗ cσ(α), α ∈ R, c ∈ S. (22)
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Equality (22) is equivalent to

σ (α)α2 · c = α ∗ cσ(α), α ∈ R, c ∈ S, (23)

the latter meaning: α2 · c = α ∗ c, if α � 0 and −α2 · c = α ∗ c−, if α < 0.

Proposition 3. Let (S,+, R, ∗) be an s-space over R. Then (S,+, R, ·) is a vector
space over R.

The two spaces (S,+, R, ∗) and (S,+, R, ·) are equivalent in the sense that every
expression in the first space can be presented in terms of the operations of the second
space, and vice versa. Thus we have:

Proposition 4. Every s-space over R induces via (22) an equivalent vector space over R.

S-spaces induced by vector spaces. Let (S,+, R, ·) be a vector space over R. The
system (S,+, R, ∗), where “∗” is defined by

α ∗ c = σ (α)α2 · cσ(α) = α2 · c (24)

is an s-space over R. The two spaces (S,+, R, ∗) and (S,+, R, ·) are equivalent.
One can make use of both operations for multiplication by scalars simultaneously.

The system (S,+, R, ·, ∗) can be viewed either as a vector space over R endowed with
the operation (24) or as an s-space over R endowed via (22) with the operation “·”.
In (S,+, R, ·, ∗) one has two different notations for the opposite operator. Namely,
opposite is denoted in (S,+, R, ·) by opp(a) = −a, whereas in (S,+, R, ∗) one writes
opp(a) = a−.

Using that the spaces (S,+, R, ·) and (S,+, R, ∗) are equivalent we can transfer
familiar concepts from the theory of vector spaces to s-spaces, as shown next.

3. S-spaces of stochastic numbers

Assume that S = (S,+, R, ∗) is an s-space over R and (S,+, R, ·) is the associ-
ated equivalent vector space. From the vector space (S,+, R, ·) we can transfer vector
space concepts, such as linear combination, linear dependence, basis, etc., to the s-space
(S,+, R, ∗). For example, the concept of linear combination obtains the following form.

Let c(1), c(2), . . . , c(k), k � 1, be finitely many (not necessarily distinct) elements
of S and let f = ∑k

i=1 γi ·c(i) = γ1 ·c(1)+γ2 ·c(2)+· · ·+γk ·c(k) with γ1, γ2, . . . , γk ∈ R

be a linear combination of c(1), c(2), . . . , c(k) in the vector space (S,+, R, ·). Using (22)
we introduce a linear combination in the s-space (S,+, R, ∗) by

f = √|γ1| ∗ c
(1)

σ (γ1)
+ √|γ2| ∗ c

(2)

σ (γ2)
+ · · · + √|γk| ∗ c

(k)

σ (γk)
. (25)

Defining αi with |αi| = √|γi|, σ (αi) = σ (γi), we can rewrite (25) as

f = α1 ∗ c
(1)

σ (α1)
+ α2 ∗ c

(2)

σ (α2)
+ · · · + αk ∗ c

(k)

σ (αk)
. (26)
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Proposition 5. The set

span
{
c(1), c(2), . . . , c(k)

} =
{

k∑
i=1

αi ∗ c
(i)

σ (αi)
| αi ∈ R

}

of all linear combinations of c(1), c(2), . . . , c(k) is a subspace of S .

Definition. The elements c(1), c(2), . . . , c(k) ∈ S , k � 1, are linearly dependent (over
R), if there exists a nontrivial linear combination of {c(i)}, which is equal to 0, i.e. if
there exist a system {αi}k

i=1 with not all αi equal to zero, such that

α1 ∗ c
(1)

σ (α1)
+ α2 ∗ c

(1)

σ (α2)
+ · · · + αk ∗ c

(k)

σ (αk)
= 0. (27)

The elements c(1), c(2), . . . , c(k) ∈ S are linearly independent, if (27) is possible
only for the trivial linear combination, such that αi = 0 for all i = 1, . . . , k.

Linear mappings in s-spaces. Let S1 = (S1,+, R, ∗), S2 = (S2,+, R, ∗) be two
s-spaces over R and let ϕ :S1 → S2 be a linear (homomorphic) mapping, that is:

ϕ(x + y) = ϕ(x) + ϕ(y), (28)

ϕ(γ ∗ x) = γ ∗ ϕ(x), x, y ∈ S1, γ ∈ R. (29)

It is easy to check that ϕ(x−) = (ϕ(x))−; more generally, any linear mapping
satisfies:

ϕ
(
α1 ∗ x

(1)

σ (α1)
+ α2 ∗ x

(2)

σ (α2)
+ · · · + αk ∗ x

(k)

σ (αk)

)
= α1 ∗ ϕ

(
x(1)

)
σ(α1)

+ α2 ∗ ϕ
(
x(2)

)
σ(α2)

+ · · · + αk ∗ ϕ
(
x(k)

)
σ(αk)

, (30)

where α1, α2, . . . , αk ∈ R, x(1), x(2), . . . , x(k) ∈ S1. In particular,

ϕ(α ∗ xλ + β ∗ yµ) = α ∗ ϕ(x)λ + β ∗ ϕ(y)µ, x, y ∈ S1, α, β ∈ R. (31)

Obviously condition (31) completely characterizes a linear mapping and can sub-
stitute conditions (28) and (29).

Let (S,+, R, ∗) be an s-space, x(1), x(2), . . . , x(n) ∈ S and let Sn = (Rn,⊕, R, ∗)

be the canonical s-space. The mapping ϕ : Sn → S , such that

ϕ(α1, α2, . . . , αn) = α1 ∗ x
(1)

σ (α1)
+ α2 ∗ x

(2)

σ (α2)
+ · · · + αn ∗ x

(n)

σ (αn), (32)

is linear [7].
Denote the n-vector e(i) = (0, 0, . . . , 0, 1, 0, . . . , 0), where the component 1 is on

the ith place. We consider e(i) as element of Sn, where opp(e(i)) = e
(i)
− and ¬e(i) = e(i).

Relation (32) implies

ϕ
(
e(i)

) = αi ∗ x
(i)

σ (αi)

∣∣
αi=1 = x(i), i = 1, . . . , n. (33)
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The mapping ϕ is the only linear mapping from Sn to S with the property (33). Indeed,
if (33) holds, then by (30),

ϕ(α1, α2, . . . , αn) = ϕ
(∑

αi ∗ e
(i)

σ (αi)

)
=

∑
αi ∗ ϕ

(
e(i)

)
σ(αi)

=
∑

αi ∗ x
(i)

σ (αi)
.

We thus obtain that relation (33): ϕ(e(i)) = x(i), i = 1, . . . , n, is sufficient to
determine the mapping (32). As in the case of vector spaces, every mapping of the set
(e(1), . . . , e(n)) into S of the form ϕ(e(i)) = x(i), i = 1, . . . , n, can be extended to a
unique linear mapping of Sn into S .

Basis in an s-space. Let S be an s-space over R. The set {c(i)}k
i=1, c(i) ∈ S , k � 1, is a

basis of S , if c(i) are linearly independent and S = span{c(i)}k
i=1.

Proposition 6. A set {c(i)}k
i=1, c(i) ∈ S , k � 1, is a basis of S , iff every f ∈ S can be

presented in the form (26) in a unique way (i.e. with unique scalars αi).

Let S be an s-space over R and {c(i)}k
i=1 be a basis of S . Assume that a = ∑k

i=1 αi∗
c
(i)

σ (αi )
, b = ∑k

i=1 βi ∗ c
(i)

σ (βi)
are two elements of S . Their sum is

a + b =
k∑

i=1

αi ∗ c
(i)

σ (αi )
+

k∑
i=1

βi ∗ c
(i)

σ (βi)
=

k∑
i=1

(αi ⊕ βi) ∗ c
(i)

σ (αi+βi)
. (34)

Multiplication by scalars is given by

γ ∗ a =
k∑

i=1

|γ |αi ∗ c
(i)

σ (αi)
=

k∑
i=1

|γ |αi ∗ c
(i)

σ (|γ |αi)
. (35)

To every a = ∑k
i=1 αi ∗c

(i)

σ (αi )
∈ S we associate the k-tuple (α1, α2, . . . , αk). Then,

minding formulae (34), (35), we define addition and multiplication by scalars by means
of (17), (18), arriving thus to the canonic s-space Sk = (Rk,⊕, R, ∗).

As we know, negation in S is same as identity. Opposite in S is a− = opp(a) =∑k
i=1 αi ∗ c

(i)

−σ(αi )
= ∑k

i=1(−αi) ∗ c
(i)

σ (−αi)
, or, in terms of Sk = (Rk,⊕, R, ∗) we ob-

tain (19).

Theorem 1 [7]. Any s-space over R, with a basis of k elements, is isomorphic to Sk.

Let S be an s-space spanned over a finite basis s(1), s(2), . . . , s(k). As in the vector
case, the number k does not change with the particular basis and will be called dimension
of S .

Stochastic numbers (m; s) can be considered as elements of a direct sum V ⊕ S
of a vector space V and an s-space S . Assume that V and S have finite bases both
of dimension k. Namely, let V = Vk be a k-dimensional vector space with a basis
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(v(1), . . . , v(k)) and let S = Sk be a k-dimensional s-space having a basis (s(1), . . . , s(k)).
Then we say that (v(1), . . . , v(k); s(1), . . . , s(k)) is a basis of the k-dimensional space
Vk ⊕ Sk. Such a setting allows us to consider numerical problems involving vectors and
matrices, wherein the numeric variables have been substituted by stochastic ones. In the
next section we consider such a problem.

4. Linear systems with stochastic right-hand side

We consider a linear system Ax = b, such that A is a real n × n-matrix and the
right-hand side b is a vector of stochastic numbers. Then the solution vector x also
consists of stochastic numbers, and, respectively, all arithmetic operations (additions
and multiplications by scalars) in the expression Ax are interpreted in the sense of the
above presented theory (therefore we shall write A s∗ x instead of Ax).

Problem. Assume that A = (αij )
n
i,j=1, αij ∈ R, is a real n×n-matrix, and b = (b′; b′′) is

an n-vector of (generalized) stochastic numbers, such that b′, b′′ ∈ R
n, b′ = (b′

1, . . . , b
′
n),

b′′ = (b′′
1, . . . , b

′′
n). We look for a (generalized) stochastic vector x = (x′; x′′), x′, x′′

∈ R
n, that is an n-vector of stochastic numbers, such that A s∗ x = b.

Solution. Clearly, the system A s∗ x = b reduces to a linear system Ax′ = b′ for the
vector x′ = (x′

1, . . . , x
′
n) of mean values and a system A ∗ x′′ = b′′ for the vector

x′′ = (x′′
1 , . . . , x′′

n) of standard deviations.
The elements of the vector A ∗ x′′ are ci = αi1 ∗ x′′

1 ⊕ · · · ⊕ αin ∗ x′′
n =√

α2
i1x

′′2
1 + · · · + α2

inx
′′2
n , i = 1, . . . , n.

Setting sign(x′′
i )(x′′

i )2 = yi , sign(b′′
i )(b

′′
i )

2 = ci , we obtain a linear n × n system
Dy = c for y = (yi), where D = (α2

ij ). If D is nonsingular we can solve the system
Dy = c for the vector y, and then obtain the standard deviation vector x by means of
xi = sign(yi)

√|yi|. Thus for the solution of the original problem it is necessary and
sufficient that both matrices A = (αij ) and D = (α2

ij ) are nonsingular.

5. Comparison of stochastic algebraic solutions with solutions obtained by the
CESTAC method

Numerical experiments

Several experiments have been performed in order to compare the theory and the
results obtained with the CESTAC method for impresise data. A scalar product AB has
been computed when the vector B is a real vector and the components of the vector A

are stochastic numbers. As it is shown in the theory of the CESTAC method, such a
stochastic number can be represented by an n-tuple of random values with a known
mean value m and a known standard deviation σ . In our examples n = 10, but it is
enough to take n = 3 as implemented in the CADNA software [3,4].
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Table 1
Percentages of theoretical standard deviation σ

√
N outside the confidence interval

N \ k 3 4 5 6 7 10

10 13.2 5.1 3.6 1.7 0.9 0.2
100 11.6 5.2 3.5 2.1 1.0 0.3

1000 11.4 6.2 3.4 2.0 1.1 0.3
10000 12.4 5.4 2.5 2.3 1.3 0.1

We consider an example of N components of A with n = 3 and a Gaussian random
number generator with m = 1 and σ = 0.001.

With the above conditions (m = 1, σ = 0.001) the scalar product AB has been
computed k times for various sizes N = 10, 100, . . . , 100 000. For each size N the mean
value δ of the standard deviation δi of the result (i = 1, 2, . . . , k) has been computed as
well as the standard deviation τ of the δi , i.e.

δ = 1

k

k∑
i=1

δi, τ 2 = 1

k − 1

k∑
i=1

(
δi − δ

)2
.

This provides samples of size k whose mean values approximate the theoretical
standard deviation.

As all the components of A have the same distribution, from the central limit theo-
rem the distribution of the scalar product is approximately Gaussian. So the theoretical
value of the standard deviation of the scalar product σ

√
N should be in the interval

[δ − 2τ, δ + 2τ ] with a probability 0.95.
Table 1 reports the percentages of cases where the theoretical standard deviation

σ
√

N is outside the computed confidence interval. These percentages have been com-
puted with 1000 runs.

Comments. From table 1, it is clear a posteriori that the distribution of the scalar prod-
uct is effectivelly Gaussian, as a size of 4 to 5 for the samples is enough to approximate
the theoretical value, whereas if it were not the samples should rather be of size 30.

6. Conclusion

In this work we briefly outline the algebraic theory of stochastic numbers related to
the operations addition and multiplication by scalar and apply this theory for the solution
of a linear algebraic problem.

The theoretic study of the properties of stochastic numbers allow us to obtain rig-
orous abstract definition of stochastic numbers with respect to the operations addition
and multiplication by scalars. Our theory also allows us to solve algebraic problems
with stochastic numbers. This gives us a possibility to compare algebraically obtained
results with practical applications of stochastic numbers, such as the ones provided by
the CESTAC method [3]. Such comparisons will give additional information related to
the stochastic behaviour of random roundings in the course of numerical computations.
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